Lightweight Cryptography for RFID Systems

Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo
CANADA

<http://comsec.uwaterloo.ca/~ggong>
Part III. Design of Authentication Protocols for RFID Systems

- **Security** and **Privacy** threats in RFID systems
- **Lightweight** Crypto Solutions to Authentication for RFIDs
- **LPN Based** Entity Authentication Protocol for RFIDs
- **WG-7** Based Authentication Protocol for RFIDs
Security Threat Classification

- Information Leakage
- Privacy Violation
- Tag Impersonation Attack
- Relay Attack
- Denial of Service Attack
- Backward and Forward Traceability
- Server Impersonation Attack
Information Leakage

Problem

An adversary should not be able to obtain useful information about the tagged object.

Attacking Method

The adversary can query the target tag or eavesdrop communications between the tag and readers.
Privacy Violation

Problem

An adversary should not be able to track the movement of a tagged item, and by extension, the person associated with it.

Attacking Method

The adversary can query the target tag and correlate data from multiple RFID readers.
Tag Impersonation Attack

Problem

An adversary should not be able to impersonate a tag.

Attacking Method

The adversary can query the target tag or eavesdrop communications between the tag and readers. Then the adversary tries to use the responses from the victim to fool a legitimate reader.
Replay Attack

Problem

An adversary should not be able to reuse the communications from previous sessions to perform a successful authentication between a tag and a reader.

Attacking Method

The adversary can intercept the valid authenticators from a past transaction and use them to finish the authentication.
Denial of Service Attack

Problem

An adversary should not be able to disturb the interactions between a tag and a reader.

Attacking Method

The adversary can intercept or block the transmitted messages which might lead to the desynchronization of the shared secret between a reader and a tag.

G. Gong (University of Waterloo) Lightweight Crypto for RFID: Part III December 12 - 15, 2010 8 / 31
Backward and Forward Traceability

Problem

An adversary should not be able to link a tag with past and future actions performed on the tag, even after compromising the tag.

Attacking Method

The adversary can compromise a tag and try to track the victim’s past and future transactions.
Server Impersonation Attack

Problem

An adversary should not be able to impersonate a legitimate server to the tag without knowledge of a tag’s secret.

Attacking Method

The adversary can eavesdrop a valid session and block some messages from reaching the tag. Then the adversary initiates another session as an impersonated reader.
Countermeasures

<table>
<thead>
<tr>
<th>Physical Protection</th>
<th>Distance measurement, Faraday cage approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deactivation</td>
<td>Killing, sleeping, hash lock</td>
</tr>
<tr>
<td>Re-naming</td>
<td>Relabeling or effacing, minimalist cryptography, re-encryption</td>
</tr>
<tr>
<td>User-Oriented</td>
<td>Light Crypto based approaches</td>
</tr>
<tr>
<td>Proxy Or Filter</td>
<td>Watchdog tag, RFID guardian</td>
</tr>
<tr>
<td>Jamming</td>
<td>Blocking, soft-blocking tag</td>
</tr>
<tr>
<td>Entity authentication</td>
<td>PRG-based, hash-based, private authentication</td>
</tr>
</tbody>
</table>
Identification Protocol

An identification protocol allows a reader to obtain the identity of a queried tag, but no proof is required.

- Primal goal of identification protocols is to provide functionality and privacy.
- Examples: Localization, stock management, etc.
Authentication Protocol

An authentication protocol allows a reader to be convinced of the identity of a queried tag. Conversely, it can allow a tag to be convinced of the identity of a querying reader. If both properties are ensured, we speak of mutual authentication.

Primal goal of authentication protocols is to provide security.
Examples: Access control, e-documents, anti-clone, anti-counterfeiting, etc.
Performance Requirements

- **Low Computational Cost**: The computational overhead of authentication protocols in the tag side should be small due to the limited power available to RFID tags.

- **Low Communication Cost**: The message transmitted in the authentication phase should be minimized because of the limited bandwidth available to RFID tags.

- **Low Storage Requirement**: The data stored in a RFID tag should be kept as small as possible since the tag memory is extremely constrained.

- **Scalability**: The back-end database should be able to efficiently identify an individual tag even though the tag population is huge.
Privacy-Preserving RFID Authentication Protocols

- **Block Cipher** Based Authentication Protocols
- **Public-key** Based Authentication Protocols
- **HB-family** Based Authentication Protocols
HF tags running at a frequency of 100kHz are considered.
The standard requires that a response must follow 320μs after a request. Otherwise, the tag has to stay quiet.
AES is too slow (1032 cycles/block) to meet the requirement of the standard and therefore an interleaving authentication method is used.
The most commonly public-key schemes, such as those based on the difficulty of factorization, discrete logarithms, or elliptic curve discrete logarithms, are not suitable for RFID applications. The hardware implementations of public-key schemes usually require many tens of thousands of logical gates.

Two types of identification schemes can provide public-key functionality to RFID tags at a low cost.

- Use a variation of the Rabin cryptosystem (i.e., SQUASH [Shamir’08] and WIPR [Oren et al.’08])
- Use a token (coupon)-based approach (i.e., cryptoGPS [Girault’07, Mcloone et al.’07])
The computation on the tag is simple.

There are a variety of implementation trade-offs. For example, we can use a sparse challenge c to “change" multiplication into a small number of additions (but still cost).
HB⁺ Protocol [Juels & Weis ’05]

Tag \((k_1, k_2)\)

\[
\begin{align*}
 b & \in_R \{0, 1\}^m \\
 v & \in_R \{0, 1\} \text{ with } \Pr[v = 1] = \eta \\
 y & = (a \cdot k_1) \oplus (b \cdot k_2) \oplus v
\end{align*}
\]

Reader \((k_1, k_2)\)

\[
\begin{align*}
 b & \rightarrow a \\
 a & \in_R \{0, 1\}^m \\
 y & \rightarrow (a \cdot k_1) \oplus (b \cdot k_2) = y
\end{align*}
\]

- Based on **Learning Parity with Noise** (LPN) problem
- \(k_1\) and \(k_2\) are two \(m\)-bit vectors as **authentication key**,
 \(\eta \in (0, \frac{1}{2})\), \(b\) is a **blinding vector**, \(a\) is a **challenge vector**
Definition of Circulant-P2 Matrix

\((m \times m)\) Square Circulant Matrix

\[
\begin{bmatrix}
\theta_0 & \theta_1 & \cdots & \theta_{m-1} \\
\theta_{m-1} & \theta_0 & \cdots & \theta_{m-2} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_1 & \theta_2 & \cdots & \theta_0 \\
\end{bmatrix}
\]

Circulant-P2 Matrix

- \(m\) is a prime number satisfying that 2 is a primitive element of finite field \(GF(m)\).
- Square, landscape, and portrait: \(C_\theta, C_\theta^{[n \times m]}, \text{ and } C_\theta^{[m \times n]}\)
All row vectors in a landscape circulant-P2 matrix (and all column vectors in a portrait circulant-P2 matrix) are linearly independent.

A landscape circulant-P2 matrix always has a right inverse. Likewise, an portrait circulant-P2 matrix always has a left inverse.

All m row vectors in a square circulant-P2 matrix C_θ are linearly independent if and only if the Hamming weight of θ is odd. Consequently, C_θ is invertible if only if the Hamming weight of θ is odd.
A symmetric-key encryption scheme

\[z = Enc(\theta, \kappa) = \theta \circ C_{\kappa}^{(m-1) \times m}, \]

- Plaintext \(\theta \): \((m - 1)\)-bit random vector, \(\theta \neq 0_{m-1} \)
- Encryption key \(\kappa \): randomly selected from \(S_e^m \)
- Ciphertext \(z \): an element in \(S_e^m \)
- \(S_m \): Set of all \(m \)-bit vectors except \(0_m \) and \(1_m \)
- \(S_e^m \): Set of all vectors in \(S_m \) whose Hamming weights are even
<table>
<thead>
<tr>
<th>Tag ((k_1, k_2))</th>
<th>Reader ((k_1, k_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \leftarrow a \in_R S_m);</td>
<td>(a \in_R S_m^e);</td>
</tr>
<tr>
<td>(b \in_R S_m);</td>
<td>(b \in_R S_m);</td>
</tr>
<tr>
<td>(v \in_R {{0, 1}^n</td>
<td>\Pr[v_j = 1] = \eta\text{, where } 0 \leq j \leq n - 1};</td>
</tr>
<tr>
<td>(y = (b \circ C_{k_1}^{[m \times n]}) \oplus v);</td>
<td>(y = (b \circ C_{k_1}^{[m \times n]}) \oplus v);</td>
</tr>
<tr>
<td>(r \in_R {0, 1}^{m-n-1});</td>
<td>(r \in_R {0, 1}^{m-n-1});</td>
</tr>
<tr>
<td>(z = (y</td>
<td></td>
</tr>
</tbody>
</table>

\(y||r = \text{Dec}(z, k_2 \oplus a);\)

? \(\text{Hwt}((b \circ C_{k_1}^{[m \times n]}) \oplus y) \leq \tau\)

\(k_1 \leftarrow S_m\) and the parity of \(\text{Hwt}(k_1)\) is public, \(k_2 \leftarrow S_m^e\), interaction expansion \(n < m\), noise level \(\eta \in (0, \frac{1}{2})\), integer pass-threshold \(\tau \in (\eta n, \frac{n}{2})\)
An LCMQ authentication system is denoted by a pair of probabilistic functions \((\mathcal{T}_{k_1, k_2, \eta, n}, \mathcal{R}_{k_1, k_2, n, \tau})\).

Definition (DET-Model)

Adversary \(A\) interacts \(q\) times with the tag \(\mathcal{T}_{k_1, k_2, \eta, n}\).

Definition (MIM-model)

Adversary \(A\) manipulates any communications between the tag \(\mathcal{T}_{k_1, k_2, \eta, n}\) and the reader \(\mathcal{R}_{k_1, k_2, n, \tau}\) for \(q\) executions.

- LCMQ protocol is **provably secure** in both DET-model and MIM-model!
According to the LCMQ security proofs in the DET model, \(m \geq 81 \) would suffice to provide 80-bit security.

Security proof in the MIM-model demands negligible false rates, ruling out too small choices of \(m \).

Recommended Parameter Set for 80-bit Security

- \(m = 163 \), \(n = 162 \), \(\eta = 0.08 \), \(\tau = 19 \)
- Key size: 326-bit
WG-7 based Authentication Protocol (Luo-Qi-Gong-Lai 10)

Randomly pick n_R→ (n_R)→ (M_1, M_2)← Randomly pick n_T

$M_1 = id \oplus n_T$

$M_2 = WG7(k, n_R \oplus n_T)$

Search a valid (id, k) such that

$WG7(\hat{k}, n_R \oplus M_1 \oplus \hat{id}) = M_2$

Continuously execute WG7 for 80 clock cycles and obtain M_3

Verify M_3

A privacy-preserving challenge-response protocol
The protocol has the following privacy and security properties:

- **Tag untraceability**
- **Tag impersonation**
- **Reader impersonation**

An adversary can obtain at most 160 consecutive keystream bits for a successful mutual authentication.

For a **chosen IV attack**, the adversary can get at most 80 keystream bits for each IV, thus it is **impossible** for the adversary to obtain 224 consecutive keystream bits in this protocol.
Devices Employed for Our Implementation

- 1. DPO7104 oscilloscope
- 2. USRP motherboard with two RFX900 daughterboards, in conjunction with software radio GNU Radio
- 3. A mini-guardrail antenna from Impinj
- 4. Two WISP tags from Intel Research Seattle
- 5. USB Debugger -- MSP430-FET430UIF from Texas Instrument
- 6. A Volare UHF-USB reader as an auxiliary reader to debug the WISP tags
Concluding Remarks

- **RFID** is one of the most promising technologies in the field of ubiquitous and pervasive computing.
- **EPC standard** has put forward austere challenge for designing security mechanisms for RFID systems.
- **Lightweight** cryptographic **algorithms** and **protocols** are crucial for RFID security.
Related Work

Z. Li and G. Gong
Secure and Efficient LCMQ Entity Authentication Protocol.

Y. Luo, Q. Chai, G. Gong, and X. Lai
A Lightweight Stream Cipher WG-7 for RFID Encryption and Authentication.
IEEE Global Communications Conference (IEEE GLOBECOM 2010), December 6-10, 2010, Mimami, Florida, USA.

The other references can be found in the above two papers.
Questions?